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Abstract 

Edgeworth expansions as well as saddle-point methods are used to approximate the distri- 
butions of some spacing statistics for small to moderate sample sizes. By comparing with the 
exact values when available, it is shown that a particular form of Edgeworth expansion produces 
extremely good results even for fairly small sample sizes. However, this expansion suffers from 
negative tail probabilities and an accurate approximation without this disadvantage, is shown to 
be the one based on saddle-point method. Finally, quantiles of some spacing statistics whose 
exact distributions are not known, are tabulated, making them available in a variety of testing 
contexts. (~) 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Given a random sample from some unknown distribution, it is often necessary to 

check whether the sample comes from a particular completely specified distribution F0. 
I f  F0 is continuous, by the probability integral transform x ~ Fo(x) ,  this is equivalent 
to testing for uniformity of  the transformed sample. From now on in this article, we 
assume that such a transformation has already been applied and our data is on the 

unit interval (0, 1). Suppose Xa,X2 . . . . .  Xn is a random sample from F where F is 

a continuous distribution on (0, l )  and we are interested in testing H0: F ---- U(0, 1) 
where U(0, 1) is the uniform distribution on the interval (0, 1). This is the classical 
goodness-of-fit problem and in this article, we will be concerned with tests based on 
spacings, i.e., the gaps between consecutive ordered observations. 
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Spacings are the natural choice for directional data problems where they are the 
maximal invariants with respect to change of the zero direction and the sense of rota- 
tion. 

Let )((1)~<X(21 ~< "'" ~<X(n) be the corresponding order statistics for the data in hand. 
Define the spacings obtained from the sample by 

Di = X(i) - X(i-I), i ----- 1,2 . . . .  ,n + 1, 

where 3((0) = 0 and X(n+l) - 1. Under H0, XbX2 . . . . .  Xn are i.i.d. U(0, 1) and the D i ' s  

are called Uniform Spacings. For the special case of Uniform Spacings, we denote 

them by Ti. 
Various statistics based on spacings have been proposed to test for uniformity. 

A large class of these can be written in the general form 

n+l 

Gn = Z h ( ( n  + 1)Di). 
i=l 

Some standard cases, which have been discussed in the literature, correspond to h(x) = 
x 2, h(x) = I x -  11, h(x) = logx and h(x) = xlogx. It has been shown (see, Sethuraman 
and Rao, 1970) that under a smooth sequence of alternatives, the Greenwood statistic 
has the maximum efficacy in this class Gn. 

In order to use these tests based on spacings, it is necessary to know the null 
distributions of the corresponding statistics. It turns out that the exact small sample null 
distributions are not known in most of the cases. The asymptotic null distributions are 
known to be normal under mild conditions on h(.). However, this asymptotic normality 
is potentially misleading since it is generally good only for considerably large sample 
sizes. In this paper we discuss the use of approximations which ease calculations and 
which are quite accurate for small to moderate sample sizes. 

Section (2) contains a brief review of what has been previously done. Section 
(3) discusses the use of Edgeworth expansion techniques while Section (4) consid- 
ers saddle-point approximations. 

2. Background 

Let us denote the Greenwood statistic (corresponding to h ( x ) =  x2), by 

n+l 

G,,n = Z Ti 2, (2.1) 
i=1 

the Rao's spacing statistic (corresponding to h ( x ) =  I x -  11), by 

n+l Ti 1 
G2.n = Z n +  1 

i=l 

(2.2) 
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and the 'log' statistic by 

n+l 

G3,n = Z l og (T / ) ,  ( 2 . 3 )  
i=1 

with the corresponding cumulative distribution functions denoted by Fl,n(.), F2,n(.) 
and F3,~(.), respectively. Early attempts to tabulate exact values of FI,,( .)  were by 
Greenwood (1946) and Gardner (1952), who obtained exact distributions up ton  = 3. 
Burrows (1979) and Currie (1981) tabulated selected percentage points of the Green- 
wood statistic up to n = 20 using a recursive algorithm. The method breaks down for 
higher n due to complicated nature of the algorithm and hence, no exact tables are 
available for such cases. 

Hill (1979) used Johnson and Log-normal curves to approximate Fl,~(.) for n up 
to 10 and Stephens (1981) fitted Pearson curves to approximate Fl,n(') for n~>12. 
Although the latter is pretty close to the exact values for n = 20, its behavior for 
higher n is not known. Moreover, this method does not give any easy approximating 
formula for F l , n ( ' ) .  

The exact density of GLn/2 is given by 

n 1 xn-Jfj((n + 1)x) 
f ( x )  n! 

l V  , 

where 

-1)!1 )k(~) J ) ( x ) -  ( j  Z ( - 1  ( x - k )  j - l ,  0 < x < j. 
O<~k<x 

Here j~(.) stands for the density of the convolution of j independent U(0, 1) random 
variables (see, e.g., Rao (1976) for circular case and also Darling (1953)). Using 
numerical integration, Rao (1976) and Batschelet (1981) provide exact critical values 
of G2,~ for ~ = 0.01,0.05 and 0.1 and selected values of n = 1 to 200. Their tables 
were further extended by Russell and Levitin (1995) to incorporate more values of n 
and c¢. As is obvious from the formula of density, this method is very slow since it is 
computationally involved and hence, impractical. 

For all other spacing statistics, neither the exact distributions nor tables of critical 
values are available for finite n. 

Using the well-known fact that 

{(nq-l'7~ln+l d { ~ }  n+l 
I i J i=l  = ' ( 2 . 4 )  

i=1 

where W1, W2 . . . . .  Wn+l are i.i.d, exponential with mean 1 and W is their sample mean 
(see, e.g., Pyke, 1965), it can be shown that all the spacing based statistics discussed 
previously are asymptotically normal (see, e.g., Rao and Sethuraman, 1975). 
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Moran (1947) gives the first four raw moments of Greenwood statistic to be 

2 
t - -  

/21 n + 2 '  

, 22(n + 6) 
/22 = (n + 2)(n + 3)(n + 4) '  

, 23(n 2 + 17n + 90) (2.5) 

/23 = (n + 2 ) . . .  (n + 6) '  

t 24(n 3 + 33n 2 + 434n + 2520) 
/24 ~--- (n + 2 ) . - .  (n + 8) ' 

from which, the measures of skewness and kurtosis are obtained to be 

= /23 (10n - 4)(n + 3)1/2(n + 4) 1/2 
fil,n /23/2 = nl/2(n + 5)(n + 6) ' 

2 (2.6) 
_ _  /24 (3n 3 + 303n 2 + 42n -- 24)(n + 3)(n + 4) 

fl2,n /22 -- n(n + 5)(n + 6)(n + 7)(n + 8) 
2 

Darling (1953) gives the formula for the characteristic function of the 'log' statistic 
G3,n t o  be 

r ( n  + 1){/'(it + 1))n+l 
tp(t) = (2.7) 

F((n + 1)(it + 1)) 

Differentiating Eq. (2.7), the first four raw moments of the 'log' statistic can be obtained 
in terms of polygamma functions. These are very complicated but can be handled using 
software capable of symbolic mathematics like Mathematica or Maple. Using them and 
Eq. (2.6), we found the skewness and kurtosis of the two statistics for various values 
of n. Table 1 summarizes the results. 

In comparison with the skewness and kurtosis values for a normal distribution of 0 
and 3, respectively, these are quite 'non-normal' even for n = 50 or 100. The skewness 
and kurtosis values of Rao's spacing statistic can be found to be (0.247, 2.940) for n = 5 

Table 1 

Skewness and kurtosis of  some spacing statistics 

n Gl,n G3,n 

~l #2 #1 #2 

5 1.587 6.827 - 1.202 5.116 
10 1.706 8.351 -0 .853  4.068 
20 1.584 8.201 - 0 . 6 0 5  3.537 
50 1.218 6.378 -0 .383  3.216 

100 0.926 5.026 - 0.271 3.108 
500 0.440 3.473 -0 .121  3.022 

1000 0.314 3.241 - 0 . 0 8 6  3.011 
oo 0.000 3.000 0.000 3.000 
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and (0.180,2.971) for n = 10. This shows that in some cases like G2,~, asymptotic 
normality kicks in rather quickly while for others, a normal approximation would be 
quite bad for small samples. 

Hence, there is a need to look for approximations to the exact distributions; in 
particular, the Edgeworth expansions and saddle-point approximations. 

3. Edgeworth expansion method 

From now on, we use the symbols ~(.) and q~(.) to denote the standard normal 
distribution and density functions, respectively. Edgeworth expansions for statistics 
have a long history and we first quote the following general result from Hall (1992, 
pp. 46-48): 

Proposition 3.1. Suppose S~ is a statistic with a limiting standard normal distribution 
and is a 'smooth' function of vector means. Then, 

( pl(x)  p2(x) 
P(Sn <~x) = ~(x) + c~(x) \ V~ + n 

pAx) ~ +""  + 7 ] + o(n-J/2), 

where 

1 2 pl(x) ---- -{kl,2 + gk3,1(x - 1)}, 

p2(x) = -x{½(kz,2 + k21,2) + ~4(k4,1 + 4kl,2k3,1 )(x 2 - 3) 

+ l k 2 , 1 ( x 4  - lOx 2 + 15)}, 
(3.8) 

and 

~Cj, n = n-(J-2)/2(kj,1 +n-lkj ,2 +n-2kj,3 + . . . ) ,  j ~ l ,  

is the jth cumulant of  Sn. 

A different kind of Edgeworth expansion correct to o(n- 1 ) for any asymptotic normal 
statistic can be obtained as follows: 

Proposition 3.2. Suppose Gn is a statistic with an asymptotic normal distribution and 

Sn = G, - E(G,)  
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def Let f l l ,n = fll(Gn) and fl2.nde-~f fl2(Gn). Then, i f  ill,, = O ( n - 1 / 2 ) ,  fl2,n -- 3 = O ( n  - 1 )  

and higher-order cumulants Of Sn are O(n-~), a > 1, we have 

P(Sn<~X)=~(x)-c~(x)[fl l 'n(X~ - 1 ) +  (f12"n-3)(x3-3x)24 

2 2 + ~, J ] +fll,n(X - -  lOx 3 + 15x) otn_l,  ' 
(3.9) 

72 
o 

Proof. By the given conditions, the characteristic function of Sn is 

X(t) = exp [0 + 

= e - f l / 2  [1 

l(it) (it) 3 ~. (it) 4 ] 
~ - -  + fll,n--~- + (fl2,n - - J ) ~ -  + O( n-1 ) 

- (it) 3 - , (  it)4 R2 ( it)6 ] 
+ l J l , n - - - ~  - + ( f l 2 , n  - - J ) - - ~ -  + t"l,n 72 + ° ( n - l )  " 

On inversion, this gives 

[o H~(x) 
P(Sn <<.x) = O(x) - c~(x) Lm,n--~ + 

+ Hs(x) + o(n -~) , 

where Hi(x) is the j th Hermite polynomial and satisfies 

°° e-itx(it)J dt = -Hj_l(X)q~(x), j>~ l. [] 
oo 

A similar result without complete proof can be found in Does et al. (1988) where 
it is specifically applied to the Greenwood statistic. We now apply these results to the 
Greenwood and 'log' statistics. Some of the regularity conditions like smoothness of 
h(.), do not hold for Rao's spacing statistic and hence these results are not directly 
applicable. 

3.1. The Greenwood statistic 

Using the characterization of spacings given in Eq. (2.4), Proposition 3.1 can be 
applied to obtain an Edgeworth expansion of normalized Greenwood statistic: 

x /n+  1 
Sn -- ~ { ( n  + 1)Gl,n - 2}. (3.10) 

Kabaila (1993) describes a method for computer calculation of Edgeworth expan- 
sions of smooth function models accurate to the o(n -~) term. The method expands the 
cumulants of the statistic asymptotically and collects the relevant coefficients to form 
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the polynomials Pl( ' )  and p2('). We modified Kabaila's method for use on the nor- 
malized Greenwood statistic, Eq. (3.10), and implemented it in Mathemat ica .  Using 
Eq. (2.5), asymptotic expansion of the cumulants of Eq. (3.10) gives 

nl/2{ 1 1 1 l } 
Xl,, = O -  - + - -  - - -  + + . . .  

n n 2 n 3 -~  

n ° {  8 39 154 545 } 
X2, n = 1 - - + - -  + + . . .  n n 2 n 3 - ' ~  

2152 18180 130878 } 
n -1/2 10-- 194 + n 2 n3 T n4 + /£3,n ~ n 

168204 2420688 28902666 } n -1 246 8640 + + + 
K4,n ~ n n 2 n 3 n 4 " 

Thus, Eq. (3.8) gives 

p , ( x ) =  S - }x2,  

p 2 ( x )  = + 3 25_5 

Hence, 

1 (~21 191 3 25x5"~} 
T n X T - - ~ X - - i - 8  J T o ( n - l ) "  (3.11) 

We can of course apply Proposition 3.2 to obtain an Edgeworth expansion of the 
statistic 

( 2 ) v / ( n T 2 ) 2 ( n +  3 ) ( n + 4 )  (3.12) 
Sn -~ GI,n n + 2 4n 

From Eq. (2.6), we have fll(Gl,n)= O ( n - 1 / 2 ) ,  fl2(Gl,n) = 3 + O(n-l) .  Also, since 
Sn = O(1)Sn + O(nt/2), Kr(Sn) = O(n -(r-2)/2) for r~>5 by properties of curnulants. 

Hence, 

~ X )  -~- ~(X)  -- ~)(X) ( { fll,n (x2 
1) 

P ( S .  
( 

(fl2,n -- 3)( x3 -- 3X) - - +  
24 

t~2 (x 5 _ lOx 3 + 15x) "[ + otn_l ~ t  J _.]. /" l,n 
Y 72 

(3.13) 
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Table 2 
Quantiles of Greenwood statistic using Edgeworth expansion, n = 10 

ct to 

Exact Normal Edgeworth of order DHK 

n-l/2 n-1 

0.01 0.111694 0.054287 0.096327 0.130842 0.116383 
0.05 0.121088 0.091647 0.104439 0.133684 0.121583 
0.1 0.127248 0.111563 0.112076 0.137016 0.126723 
0.2 0.136050 0.13568 0.12381 0.143213 0.135104 
0.3 0.143499 0.15307 0.133414 0.149072 0.142477 
0.4 0.150744 0.16793 0.142088 0.154819 0.149639 
0.5 0.158375 0.181818 0.150434 0.160627 0.15711 
0.6 0.166976 0.195707 0.15892 0.166661 0.165441 
0.7 0.177436 0.210566 0.168109 0.17311 0.175426 
0.8 0.191648 0.227956 0.179087 0.180226 0.188419 
0.9 0.215717 0.252073 0.196186 0.188392 0.208281 
0.95 0.240356 0.271989 0.31685 0.193063 0.262817 
0.99 0.300793 0.309349 0.35937 0.197196 0.310416 

Table 2 compares the results obtained when the two expansions are used in estimat- 

ing the quantiles of  Greenwood statistic. Note that t~ satisfies P(G1,n ~<ta) = ~. Fig. 1 

summarizes the information in Table 2. Qex is the exact quantile and Qap is the ap- 

proximate quantile obtained using the appropriate approximation. The x-axis gives the 

probabilities and the y-axis gives the corresponding absolute difference in the quantiles, 

[Oex- Qapl for the various approximation formulae. The exact quantiles are taken from 

Burrows (1979), Currie (1981) and Stephens (1981). 

Visual inspection of  Table 2 and Fig. 1 suggests that the approximation given by 

Proposition 3.2 outperforms the one obtained from Proposition 3.1. This can be ex- 

plained by the fact that the expansion based on Proposition 3.2 uses the exact cumu- 

lants whereas the one based on Proposition 3.1 just collects the relevant coefficients 
from the series expansions of  the cumulants upto a given order. Such high accu- 

racy may also be explained by the fact that normalization is done with the exact 

mean and variance in Proposition 3.2 while asymptotic values are used in Proposi- 

tion 3.1. Thus, the approximation of  Proposition 3.2 provides an exactly centered and 

scaled statistic which behaves more like a N(0, 1) random variable in small sample 
sizes. 

Adding higher-order terms to Eqs. (3.10) and (3.12) do not improve the results. 

This is because, the oscillations o f  higher-order Hermite polynomials offset any of  the 
benefits of  taking higher powers of  1/n. 

Even though the approximation using Eq. (3.12) was very close to the exact one, 

Fig. 2 shows the inherent problems with all Edgeworth expansions - they do not pro- 
vide us with an exact distribution function. Hence, a density obtained by this method 
may tum out to be negative at some points or may not integrate to 1. 
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Fig. 1. Er rors  in quant i le  es t imat ion  o f  G r e e n w o o d  statistic, n = 1 0. 

3.2. The 709' statistic 

As in the case of  Greenwood statistic, Propositions 3.1 and 3.2 can be applied to 

obtain two Edgeworth expansions of  the ' log'  statistic G3,n discussed originally in 
Moran (1951 ). Defining 

¢G3,. ) 
Sn = \ n - ~  + l o g ( n +  1).+~ 

1 
+ V  n + l  ' (3.14) 

where 7 = 0.57722 is the Euler number, it is easy to check that Sn is a smooth function 
of vector means with a limiting standard normal distribution. Hence, the conditions of  
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Fig. 2. Edgewor th  expansions  o f  Greenwood  Statistic n = 5. 

I 

1.0 

Proposition 3.1 are satisfied. Calculations yield 

P(Sn ~<x)-- ~(x) + qS(x) { ~ ( - 0 . 2 4 4  + 0 . 4 5 2 x  2 ) 

+-l (0.467x + 0.477x 3 - 0.102x5))~ + o(n -l ). 
n J 

Similarly, defining 

Sn = G3,n - E(G3,n) 

 /var(a3,.) ' 

Proposition 3.2 yields another Edgeworth expansion of the 'log' statistic. 

(3.15) 

(3.16) 
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0,0 0.2 0.4 0.6 0.8 1.0 

Probability 

Fig. 3. Errors in quantile estimation of  G3,n, n = 10. 

Fig. 3 shows the errors in approximating quantiles using the two methods. We have 
used the results of 105 Monte-Carlo simulations for exact values. 

Fig. 4 plots the two approximations. A quick glance at Fig. 3 shows that 
Proposition 3.2 outperforms Proposition 3.1. 

We observe that of the two Edgeworth expansions discussed here, the one derived 
from Proposition 3.2 seems to perform better. Even though this is quite accurate for 
small sample sizes, it suffers from oscillations in the tails, where it can be outside [0, 1]. 
This is a problem since in practical situations, it is the tail areas that require accurate 
approximations. One method of overcoming this is through an alternative approach, 
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Fig. 4. Edgeworth expansions of G3,.,n = 10. 

namely saddle-point approximations which always provide a positive density. This is 
the topic of the next section. 

4.  Saddle -po int  approx imat ion  

4.1. Theory and notations 

Daniels (1954) in a pioneering paper, proposed saddle-point methods to approxi- 
mate distributions. Two good review papers on the topic are Daniels (1987) and Reid 
(1988). Let T, be a real valued statistic and K,( t )  be its cumulant generating function. 
Let R,(t)  = K,(nt)/n. Then the saddle-point approximation of the density of T, with 
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uniform error of order n-!  is given by 

W~2 n(to) eXp[n 9 , (x)  = nR~ {R,(t0) - t0x}], (4.17) 

where to is the saddle-point, determined as the root of the equation 

R'n(tO ) = x. (4.18) 

The saddle-point approximation of the distribution of T, is given by 

Gn(x) = qb(y) + dp(y)(y - I  - z - l ) ,  (4.19) 

where q~ and q~ are the standard normal distribution and density, respectively, 

y = v/2n(tox - R,(to))sgn(to), 

z = tov .'(to) 

I I1 and where Rn,R n denote the first two derivatives of R, (see, Easton and Ronchetti, 
1986). 

Often, the exact Rn is not available and an approximate form is used. Easton 
and Ronchetti (1986) suggest approximating the cumulant generating function by a 
fourth-degree polynomial using only the first four cumulants of Tn. Hence, the new 
method replaces Rn by/~n defined by 

Rn(t) = Kl,n t + tC2,nnt2/2 + l¢3,nn2t3/6 + tC4,nn3t4/24, (4.20) 

where Ki,,; i = 1,2,3,4 are the first four cumulants of T,. 
One drawback with Eq. (4.20) is that since kt,(t) is not always strictly increasing, it 

results in multiple roots to the saddle-point equation, Eq. (4.18). In such cases, Wang 
(1992) suggests replacing R, by the following: 

R n ( t ;  b )  ~- l£1,nt "-~ K2,nnt2/2 -}- (tC3,nn2t3/6 -}- t¢4,nn3ta/24)e -(x2'"nb2t2/2), (4.21 ) 

^11 
where b is chosen so that R n (t; b) > 0 Vt. This ensures a unique solution to Eq. (4.18). 

4.2. The Greenwood statistic 

Since the exact mgf of Gl,n is not known, we use the approximate version, 
Eq. (4.20), of R,. Using the first four cumulants of this statistic from Moran (1947), it 
is easily checked that k~l(t) > 0 Vt for n > 1. Hence, modifications of Eq. (4.21) are 
not necessary. The results are summarized in Table 3. Fig. 1 compares the accuracy 
of the results with those obtained from Edgeworth expansions. Proposition 3.2 seems 
to perform better overall. 

4.3. Rao's spacing statistic 

Since in this case, the exact pdf as well as tables of percentage points are available, 
we used this as a test case of how well saddle-point methods based on the four cumulant 
approximation work. 
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Table 3 
Quantiles of Greenwood statistic using saddle-point approximation 

t~ 

n - 5  n -  10 n = 2 0  

SP Exact SP Exact SP Exact 

0.01 0.1159 0.1839 0.0714 0.1117 0.0482121 0.064864 
0.05 0.1831 0.1994 0.1103 0.1211 0.065479 0.069786 
0.10 0.2131 0.2101 0.1280 0.1272 0.0733643 0.073 
0.20 0.2399 0.2260 0.1440 0 . 1 3 6 0  0.0806165 0.077 
0.30 0.2523 0.2399 0.1508 0 . 1 4 3 5  0.0838482 0.081 
0.40 0.2610 0.2537 0.1552 0.1507 0.0859238 0.084 
0.50 0.2702 0.2684 0.1594 0.1584 0.0879011 0.088 
0.60 0.2846 0.2853 0.1655 0 . 1 6 7 0  0.0907076 0.091 
0.70 0.3089 0.3060 0.1773 0 . 1 7 7 4  0.0958185 0.096 
0.80 0.3428 0.3344 0.1956 0.1916 0.103712 0.102 
0.90 0.3946 0.3830 0.2237 0.2157 0.115993 0.113 
0.95 0.4410 0.4320 0.2490 0.2404 0.127029 0.123 
0.99 0.5360 0.5475 0.3009 0.3008 0.149747 0.149 

Table 4 
Distribution function of Rao's spacing statistic using saddle-point approximation 

t P(G2,n ~< t) 

n - 5  n = 1 0  

SP Exact SP Exact 

0.278 0.012 0.013 0 0 
0.333 0.030 0.032 0.002 0.003 
0.389 0.065 0.067 0.010 0.011 
0.444 o. 120 o. 121 0.032 0.032 
0.500 0.196 o. 196 0.078 0.079 
0.555 0.289 0.289 0.158 0.159 
0.611 0.397 0.399 0.275 0.276 
0.667 0.511 0.512 0.419 0.418 
0.722 0.619 0.619 0.569 0.569 
0.778 0.718 0.717 0.708 0.708 
0.833 0.801 0.801 0.819 0.819 
0.889 0.867 0.868 0.899 0.899 
0.944 0.915 0.916 0.948 0.948 
1.000 0.949 0.948 0.976 0.976 
1.056 0.971 0.970 0.990 0.99 
1.111 0.984 0.984 0.996 0.996 
1.167 0.992 0.992 0.999 0.999 
1.222 0.996 0.996 1 l 

We  used  the correct ion f rom Eq, (4 .21)  to alleviate the p rob lem o f  non-unique  
1 solutions and the results  obta ined are in Table 4. In every  case b turned out to be 3. 

The results  are very accurate,  even  for very  small  n. Fig. 5 i l lustrates its accuracy in 

es t imat ing  quanti les.  The exact  values  are f rom Russel l  and Levit in  (1995).  
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Rag's Spacing Statistic 
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Fig. 5. Errors in quantile estimation of Rag's spacing statistic (using saddle-point approximation). 

Instead of  using just the first four cumulants, we could have used the whole cumulant 
generating function as was done recently by Gatto and Jammalamadaka (1996). The 

method is considerably slower and for all practical purposes the gain is not much. In 
fact, for Rag's spacing statistic with n = 10, our maximum observed error is 0.001 
while theirs is 0.003. 

4.4. The 'log' statistic 

Since no previous results are available for the statistic with h(x) = log(x), we 
cannot determine the accuracy of  the results as before but instead we compare them 
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Table 5 
Quantiles of G3,n using saddle-point approximation 

t~ 

n = 5  n = 10 n = 2 0  

SP Simulated SP Simulated SP Simulated 

0 . 0 1  -19.3834 -19.3710 -39.6712 -39.7399 -85.4782 -85.4932 
0.05 -17.295 -17.1897 -37.0352 -37.0047 -82.0942 -82.0425 
0.1 -16.2716 -16.1406 -35.7328 -35.6531 -80.4045 -80.3903 
0.2 -15.1251 -15.0253 -34.2619 -34.2092 -78.4743 -78.4547 
0.3 - 14 .3717  -14.3353 -33.2827 -33.2632 -77.1683 -77.1785 
0.4 -13.7983 -13.7968 -32.5119 -32.5090 -76.1158 -76.1363 
0.5 -13.3632 -13.3350 -31.8626 -31.8574 -75.1915 -75.2115 
0.6 -13.0438 -12.9234 -31.3000 -31.2545 -74.332 -74.3334 
0.7 -12.7707 -12.5350 -30.7907 -30.6570 -73.4895 -73.452 
0.8 -12.4482 -12.1536 -30.2562 -30.0247 -72.5932 -72.4578 
0,9 -11.8735 -11.7159 -29.4792 -29.2480 -71.4253 -71.2035 
0,95 -11.2607 -11.4378 -28.735 -28.6995 -70.4365 -70.2815 
0.99 -9.87405 -11.0778 -27.0856 -27.8886 -68.3877 -68.78 

with Monte-Carlo results based on 105 simulations. In this case, we did not have to 
modify the saddle-point approximation formula since the cumulant generating function 
was well behaved. The results are summarized in Table 5. Fig. 3 compares the accuracy 
of this method with Edgeworth expansions. Proposition 3.2 seems to outperform the 
saddle-point approximation. 

5. Conclusions 

Overall, we see that the Edgeworth expansion obtained using Proposition 3.2 outper- 
forms the other approximation methods that we have studied, although the saddle-point 
approximations are equally accurate in the tails. Saddle-point methods also have the 
advantage that they always yield non-negative probabilities. This is especially important 
in the tails where Edgeworth expansions can give rise to negative probabilities. 

Gatto and Jammalamadaka (1996) discuss a general conditional saddle-point ap- 
proach and apply it, in particular, to obtain distributions of spacings statistics. Our 
method based on only the first four moments is simpler and often equally accurate for 
spacings statistics. 
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